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a b s t r a c t

Authentication of foods is of importance both to consumers and producers for e.g. confidence in label

descriptions and brand protection, respectively. The authentication of beers has received limited

attention and in most cases only small data sets were analysed. In this study, Fourier-transform

infrared attenuated total reflectance (FT-IR ATR) spectroscopy was applied to a set of 267 beers (53

different brands) to confirm claimed identity for samples of a single beer brand based on their spectral

profiles. Skewness-adjusted robust principal component analysis (ROBPCA) was deployed to detect

outliers in the data. Subsequently, extended canonical variates analysis (ECVA) was used to reduce the

dimensionality of the data while simultaneously achieving maximum class separation. Finally, the

reduced data were used as inputs to various linear and non-linear classifiers. Work focused on the

specific identification of Rochefort 81 (a Trappist beer) and both direct and indirect (using an

hierarchical approach) identification strategies were studied. For the classification problems Rochefort

vs. non-Rochefort, Rochefort 81 vs. non-Rochefort 81 and Rochefort 81 vs. Rochefort 61 and 101, correct

prediction abilities of 93.8%, 93.3% and 97.3%, respectively were achieved.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Food authentication is a wide-ranging issue that has received
much attention in recent years. It is defined as the process by
which a food is verified as complying with its label description [1].
Authentication of foods is of importance both to consumers and
producers; trust in the claims made on a label is essential for
consumer confidence while product authentication to prevent
unfair competition with adulterated products is important for
producers and processors.

The verification of claimed brand identity among Trappist
beers is an example of a food authentication problem. These
specialty beers, which are only brewed by monks in a Trappist
monastery, enjoy a reputation of being of extremely high quality.
To profit from the success of Trappist beers, commercial brew-
eries introduced beers which mimicked the styles and names of
Trappist beers (e.g. by licensing the name of a long-closed
Trappist abbey). Because of this, the International Trappist Asso-
ciation introduced the ‘‘Authentic Trappist Product’’ logo [2]. This
logo assures a customer that the product is a genuine Trappist
beer, brewed according to tradition and specific quality standards.
Moreover, the logo indicates that the economic purpose of the
ll rights reserved.

: þ31 24 3652653.
brewery is directed only to support of the monastery instead of
financial profit. Nowadays, eight brands may carry the ‘‘Authentic
Trappist Product’’ logo; these include six brands originating in
Belgium (Achel, Chimay, Orval, Rochefort, Westmalle and Westv-
leteren), one from The Netherlands (La Trappe) and one from
France (Mont des Cats). The Mont des Cats brand was only
recently introduced (June 2011) and was therefore not considered
in this work. The availability of an analytical methodology to
confirm the claimed identity of any of these beers would permit
brewers and regulatory authorities to uncover fraudulent
labelling.

Until recently, the authentication of beer products has
received limited attention, and in some cases only small data
sets were analysed. For example, Weeranantanaphan et al. pub-
lished a study on Trappist beer identity using ultraviolet (UV)
spectroscopy and involving 52 samples [3]. Larger data sets of
specialty beers (including all Trappist brands except for Mont des
Cats) were analysed by means of several fingerprinting techni-
ques as part of the EU-funded TRACE project (http://www.trace.
eu.org). The results showed that metabolic profiles collected by
liquid chromatography–mass spectrometry (LC–MS) can be used
to classify Rochefort beers [4]. Alternatively, a fingerprint of the
beer volatiles obtained by headspace solid-phase micro-extrac-
tion coupled to gas chromatography–mass spectrometry (HS-
SPME-GC–MS) can also be used for this purpose [5]. The latter
approach was shown to be successful in discriminating Trappist
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beers in general from other, non-Trappist, beers. A disadvantage
of these chromatographic methods, however, is the high cost of
the equipment [6].

In an industrial setting, the use of near-infrared (NIR) or mid-
infrared (MIR) spectroscopy would be more suitable, as they are
easy to use and involve relatively low purchase and running
costs [6]. The value of these techniques for the authentication of
Rochefort 81 beers was partially explored as a challenge to the
Francophone part of Europe during the ‘Chimiométrie’ congress
held in Paris in December 2010 [7]. In this challenge, a subset of
the beers studied in the TRACE project was measured by NIR, MIR
and Raman spectroscopy and subsequently analysed using four
different approaches. It was shown that interpretation of sequen-
tial principal component analysis (PCA) models applied to the
Raman data resulted in a perfect authentication of a particular
Rochefort beer—Rochefort 81. Since no real classification model
was constructed, however, authentication was based on the
interpretation of the PCA models by the operator, which makes
the whole process rather subjective and, moreover, requires
expert knowledge regarding PCA. Therefore, ‘‘true’’ classification
models which allow one to objectively authenticate beer products
without the need for expert knowledge were developed as well.
Unfortunately, no satisfactory results were obtained when using
the individual NIR, MIR or Raman data. However, Rochefort 81
beers were identified with an accuracy of 93.0% using a non-linear
support vector machine (SVM) classifier coupled with data fusion
to combine the classification results from the individual platforms
(NIR, MIR, and Raman). This method will be referred to as
SVMfusion from now on.

The use of NIR spectroscopy for the authentication of Trappist
beers was more thoroughly explored by Di Egidio et al. [8]. In this
study, the complete set of beers from the TRACE project was
measured and subsequently analysed using several class-model-
ling techniques. This approach proved unsuitable for the discri-
mination between Trappist and non-Trappist beers in general but,
in an alternative Rochefort vs. non-Rochefort classification,
Rochefort beers were identified with an accuracy of 84.5%.
Furthermore, a partial least squares – discriminant analysis
(PLS-DA) model was found to be suitable for distinguishing
Rochefort 81 from Rochefort 101 beers (93.4% accuracy).

In this study, Fourier-transform infrared (FT-IR) attenuated
total reflectance (ATR) spectroscopy was applied to confirm
claimed brand identity of a specific beer (Rochefort 81) based on
beer spectral profiles. Due to its greater molecular selectivity, the
use of MIR spectroscopy often provides easier spectral interpreta-
tion than NIR, which is more commonly applied for the analysis of
foods. Moreover, Lachenmeier et al. showed that FT-IR is a
powerful tool for predicting the content of a range of compounds
present in beer [9]. Our research attempted the identification
both directly (i.e. in a single step) and via an hierarchical
approach involving the consecutive identification or authentica-
tion of the beer sub-classes Trappist, Rochefort, and finally
Rochefort 81 beers. The classification was preceded by extensive
chemometric analysis including the use of various options for
pre-processing of the spectra (e.g. to correct for baseline differ-
ences), robust principal component analysis (ROBPCA) for outlier
detection and extended canonical variates analysis (ECVA) for
supervised dimension reduction of the data. Finally, the reduced
data were used as inputs to various linear and non-linear
classifiers namely linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), and k-nearest neighbours (k-NN).

So, our aim was to show that FT-IR can be used for authentica-
tion of Rochefort 81 beers; if successful, this would provide a
relatively cheap alternative for authentication of these beers
compared to previously published results. In the final part of
the work, our results were compared to those obtained by NIR
spectroscopy on the same sample set using previously published
data [8].
2. Materials and methods

2.1. Sample preparation

A set of 267 bottles of both Trappist and non-Trappist beers
was analysed in this study. The non-Trappist group mostly
contained specialty beers (e.g. Abbey beers) which originated
from Belgium together with two Czech beers (Primator 21 and
24). More details regarding the beers investigated in this study
are included as Supplemental material. Beer samples were col-
lected from retail outlets in two batches (set 1 and 2) to cover
possible seasonal variability of the products; they were received
in Ashtown, Ireland in September 2008 and January 2009,
respectively and immediately placed in storage at 4 1C in the
dark. In general, the same number of bottles (at least two) of each
brand was collected in each batch although that was not always
possible given the small and often seasonal production runs of
some of the sample types. It is obvious that the limited number of
samples from any given brewery cannot be representative of total
production but, on the other hand, the aim of this study was to
maximise the variance among beer types to fully challenge any
classification model developed and this necessitated a compro-
mise on the numbers of replicate beer samples.

One day before spectral analysis, an appropriate number of
beer bottles was randomly selected, removed from storage and
left on a laboratory bench out of direct sunlight to equilibrate to
room temperature (2175 1C) for 24 h. Shortly before analysis,
each bottle was gently uncapped, left undisturbed for 5 min to
allow any foaming to subside after which an aliquot of beer was
removed from the bottle using a Pasteur pipette inserted about
half-way down the bottle. This procedure was adopted to facil-
itate the simplest possible sample handling protocol. The aliquot
was immediately scanned. No major discernible problems in
spectral quality were encountered as a result of gas bubbles
possibly because of the ATR sample presentation option selected.

2.2. FT-IR spectroscopy

FT-IR spectra were acquired on a BIO-RAD (Philadelphia, PA,
USA) Excalibur series FTS 300 FT-IR spectrometer. Each beer
sample (approximately 2 ml) was transferred by pipette onto an
in-compartment benchmark ATR trough plate containing a 451
germanium crystal with 11 internal reflections (Specac Ltd., Kent,
UK). Care was taken to minimise the presence of bubbles. For each
sample, a single beam spectrum of 64 co-added scans at a
nominal resolution of 4 cm�1 was recorded. Subsequently, a
reference background spectrum of air was subtracted. Spectra
were truncated to 800–4000 cm�1. Between samples, the ATR
crystal surface was rinsed with distilled water and dried with soft
tissue. The spectral baseline subsequently recorded by the spec-
trometer was examined visually to ensure that no residue from
the previous sample was retained on the ATR crystal. All spectra
were recorded without any nitrogen purge of the sample com-
partment. Beers were analysed in random order; duplicate spec-
tra of each sample were collected and averaged before input to
the data analysis steps.

2.3. Data analysis strategy

After spectral acquisition, the dataset was split into a calibra-
tion (training) set consisting of 172 of the samples and a test set



Table 1
The number of calibration and test set samples for each discrimination problem.

Problem Name Calibration set

(# samples)

Test set

(# samples)

Four class problem 4class

non-Trappist 94 36

Rochefort 81 29 20

Rochefort 101 12 13

Trappist (without Rochefort

81 and 101) 37 26

Rochefort 81 vs. rest R8-nonR8

Rochefort 81 29 20

Rest (non-Trappist and Trappist

without Rochefort 8)

143 75

Rochefort 61, 81, 101 vs. rest R-nonR

Rochefort 61, 81, 101 45 35

Rest (non-Trappist and Trappist

without Rochefort 61, 81, 101)

127 60

Rochefort 81 vs. Rochefort 61, 101 R8-R6R10

Rochefort 81 29 20

Rochefort 61, 101 16 15

Trappist vs. non-Trappist T-nonT

Trappist 78 59

non-Trappist 94 36
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consisting of the remaining 95 samples. For this purpose every
third beer measured was selected as a test object.

Next, extensive chemometric analysis was performed to con-
struct a model that could identify Rochefort 81 beers based on
spectral profiles. This analysis was part of a larger project where
in general the effects of different choices/approaches for data pre-
treatment, outlier detection and classification were investigated
since, for example, the wrong choice of pre-treatment or the
presence of outliers can heavily influence the performance of a
final model. Here, only the methods and results that are relevant
to the current study will be described.

2.4. Data pre-treatment

Various techniques were investigated for data pre-treatment
since the optimal method could not be selected on the basis of
visual inspection of the spectra. Asymmetric least squares
smoothing (AsLS), Savitzky–Golay (SG) derivatisation (1st and
2nd order) and standard normal variate (SNV) transformations
were used [10–12]. It must be noted that these methods do not
correct for the same effects; AsLS and SG derivatisation can
correct differences in offset and slope while SNV corrects for
differences in offset and effects due to multiplicative scattering
[13]. Therefore, the combinations AsLSþSNV and SG derivatisa-
tionþSNV were used for pre-processing of the data as well. Note
that AsLS requires the optimisation of two tuning parameters
lAsLS and pAsLS. This was achieved by visual inspection of
the corrected calibration spectra during a grid search (the
AsLS parameters were varied between 102rlAsLSr109 and
0.001rpAsLSr0.1 on a logarithmic grid). A window size of 11
variables followed by a second order polynomial smoothing step
was used during SG derivatisation.

In addition to the various pre-processing options, a final
smoothing step of the spectra was also considered. For this
purpose, a SG filter (window size of 11 plus second order
polynomial) was used [11]. In total, therefore, 16 forms of pre-
treatment, namely the various pre-processing options (including
no pre-processing whatsoever) with and without a subsequent
smoothing step, were investigated.

2.5. Outlier detection

PCA (in combination with Hotelling’s T2 and the Q statistic)
can be used to identify potential outliers in calibration data
[14–17]. Outliers in the test data were detected, after pre-
treatment of the spectra, by projection of the objects onto the
PCA hyperplane calculated for the calibration data.

Unfortunately, the standard PCA algorithm is very sensitive to
outliers. Consequently, this method may not detect all outlying
objects while, conversely, good objects may appear to be outliers
(the so-called masking and swamping effects) [18]. Robust
methods such as ROBPCA aim to estimate PCs using a majority
of the data (the most similar data points) and thus ignore the
negative effect of outliers upon the PCA models. For these reasons,
the standard PCA algorithm was replaced by a skewness-adjusted
version of ROBPCA, which can handle both symmetric and skewed
data distributions [19]. The default settings of the algorithm were
used, except for the proportion of objects used to estimate the
robust PCs - this value was set to 85%. The number of PCs selected
for retention was based on the breakpoint in the corresponding
scree plot.

Note that ROBPCA flags objects that differ from the majority of
the data as outlier. This difference can be caused by experimental
errors, but also by scatter effects (for example). The latter can be
corrected for by appropriate data pre-treatment. Therefore, data
was pre-treated before outlier detection in this study, and only
pre-treatment methods that are not influenced by outliers were
used. In this way, a maximum number of samples was retained
for subsequent data analysis.
2.6. Dimension reduction and classification

After outlier detection and removal, discriminant models for
five classification problems were constructed (see Table 1). Note
that these models were chosen such that direct and indirect
(using a hierarchical approach) identification of Rochefort 81 was
possible (see results). The 4class problem was studied to see if
multiple brands of beer can be classified at the same time since
this could be useful for practical brand identification problems.

The models were constructed in two steps namely dimension
reduction followed by classification. PCA is a commonly-used
method to compress data and visualise between-class differences.
However, PCA aims to describe all variance in the data which may
result in suboptimal results and/or needlessly complicated inter-
pretation of the final classification model [20,21]. For our pur-
poses, only the component(s) related to between-class differences
are required and therefore ECVA was used in this study [21]. This
method does not suffer from the above mentioned pitfalls since it
performs supervised dimension reduction together with classifi-
cation in accordance with LDA.

The concept of ECVA very much resembles Fisher’s version of
LDA (F-LDA). It aims to find directions or canonical variates (CVs)
in the data along which a maximum separation of the classes of
interest is achieved while the scatter within classes is simulta-
neously kept to a minimum. Assuming a data matrix X (n�m)
where the samples are divided into g groups with ni samples in
the ith group, the within-class scatter matrix Sw is defined as

Sw ¼
1

n�g

Xg

i ¼ 1

Xni

j ¼ 1

ðxij�xiÞðxij�xiÞ
0

ð1Þ

and between-class scatter matrix Sb is defined as

Sb ¼
1

g�1

Xg

i ¼ 1

ðxi�xÞðxi�xÞ0 ð2Þ

where xij is the jth sample belonging to the ith group, xi the mean
vector in the ith group and x the overall mean vector. F-LDA can
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be formulated as the problem of finding those CV that maximise

jðCVÞ ¼
CV0SbCV

CV0SwCV
ð3Þ

A unique solution to (3) can be found by solving the following
generalised eigenvalue problem

S-1
w SbCV¼ lCV ð4Þ

This equation has a¼min(m,g�1) non-zero eigenvalues. This
means that for high dimensional data (large m) the number of
variables is reduced to the number of classes minus 1 e.g. one
variable for a two-class problem. However, when the matrix Sw is
singular it is not possible to left multiply by the inverse of this
matrix as in (4). This is the cause of the breakdown of F-LDA for
under sampled (nom) data (for example). ECVA circumvents this
problem by transforming (4) into an expression that can be solved
by regression (in this case PLS)

Y¼ SwBþE ð5Þ

where Y contains as columns the differences (xi�xÞ and the
columns of B are used to obtain the CVs. The matrix E represents
the residual error. Finally, dimension reduction is achieved by
multiplication of X with CV and a discriminant function is
constructed by means of the LDA classifier (see below). Note that
the PLS step in ECVA requires optimisation of a number of latent
variables (LVs); in this study, the number was varied between
1 and 50.

As mentioned above, ECVA uses an LDA classifier. However,
there is no restriction on which classifier should be applied.
Therefore, the reduced data was also used as an input to a QDA
and k-NN (k¼1, 3, 5) classifier [22] with Euclidian distance being
used to determine the nearest neighbours. These popular classi-
fiers (including LDA) perform well on amazingly large and diverse
classification tasks [22]. Note that LDA fits a multivariate normal
density to each class with the assumption of equal class distribu-
tions (a pooled estimate of covariance is used). In this case,
different classes are identified by means of linear class boundaries
(hyperplanes). QDA is a generalised version of LDA: no equal
covariance is assumed and the class boundary between a pair of
classes is described by a quadratic function. The k-NN classifier
makes no distributional assumptions and is often successful when
the decision boundary is very irregular since non-linear class
boundaries can be described.
2.7. Selection of the final model

The predictive performance of each model (a combination of
pre-treatmentþnumber of LVs in ECVAþclassifier) was quanti-
fied by calculating the geometric mean of correctly classified
samples. This measure, instead of the arithmetic mean, was used
because the number of samples in each class was unequal. For
each classification problem, the most predictive model was found
by a 20-fold cross-validation procedure that was applied to the
calibration data. Next, this model was applied to the independent
test set.

From now on, the predictive performance found for the
calibration and the test data will be referred to as the recognition
and prediction ability respectively. For binary classification pro-
blems, the sensitivity, and specificity of the classifier were
computed as well. Here, the sensitivity and specificity were
defined as the proportion of samples corresponding to respec-
tively class one and class two which were correctly classified. In
the final step of the analysis, the CVs found by ECVA for the final
models were studied to identify which spectral regions were used
to achieve class separation.
2.8. Software

All data analysis described in this paper was performed in
MatLab (R2009b, The MathWorks, Natick, MA, USA). In general,
algorithms developed in-house were used for this purpose. For
the skewness-adjusted ROBPCA, however, the function from the
Libra toolbox was used [23]. For ECVA, the algorithm from the
ECVA toolbox was used [21].
3. Results

This study focused on the specific identification of Rochefort 81
(a Trappist beer) and both direct and indirect (using an hierarch-
ical approach) identification strategies were studied (see Table 1).
The direct, and maybe most logical, approach involves construc-
tion of the R8-nonR8 model, while hierarchical approaches
sequentially applied models listed in the table (e.g. R-nonR
followed by R8-R6R10). The 4class problem was studied to see
if multiple brands of beer can be classified at the same time; this
could be useful for practical brand identification problems.

3.1. FT-IR spectra

As a first step, the FT-IR spectra were visually inspected. A
number of different labelling procedures were applied to these
spectra (e.g. labelling samples as Rochefort or non-Rochefort,
etc.). However, in none of these cases (Fig. 1a) was any visual
differentiation between the sample types possible indicating that
more extensive multivariate data analysis was required.

Based on plots of different bottles of the same beer, such as
shown in Fig. 1b, differences between spectra due to multi-
plicative effects were expected; these were also visible in the
original spectra, for instance between 3700 and 2900 cm�1. Such
multiplicative effects may have been caused by light scattering
due to very small bubbles in the beer since the samples were not
degassed before spectral analysis. Interestingly, the multiplicative
effects appeared to be much stronger between samples originat-
ing from different batches although it will be shown that these
effects did not influence identification of the beers. Furthermore,
slight baseline differences were observed between batches which
might be related to instrument drift.

The broad band in the spectra around 3360 cm�1, and the
bands around 2130 and 1640 cm�1 were due to water, while that
at 2348 cm�1 was due to CO2 [24]. Additional bands were located
mostly in the fingerprint region of the spectrum, the major ones
being around 2983, 1151, 1084, 1045 and 878 cm�1. A shoulder
at 1026 cm�1 which showed large variation between the beer
samples was also visible. Ascription of these peaks is difficult in
biological matrices given their complexity but absorptions around
1053, 1099 and 1149 cm�1 have been identified as the funda-
mental absorption bands of primary, secondary and tertiary
alcohols [25].

Most of the above mentioned peaks, such as the water peaks,
were not expected to be useful in discriminating the different
beers and the spectra could therefore be truncated to the
fingerprint region between 800 and 1500 cm�1. However, our
models should automatically ignore useless peaks since they were
constructed in a supervised manner and truncation was therefore
not considered in this study.

3.2. Outlier detection

After spectral pre-treatment, ROBPCA for skewed data was
used for outlier detection and removal [19]. In general, the first
2–6 robust PCs, explaining 495% of the variance in the data, were



1000 2000 3000 4000

In
te

ns
ity

 (a
.u

.)

non-Trappist
other TrappistRochefort  8°

Rochefort 10°

R
8°

 s
am

pl
e 

fro
m

ba
tc

h 
2

Wavenumber (cm-1)

R8° sample from batch 1

Fig. 1. (a) Raw FT-IR spectra of all samples and (b) raw spectra of two Rochefort 81

beers from different batches plotted against each other. The dashed black line in

(b) represents the ideal relationship between identical spectra.

C
an

on
ic

al
 v

ar
ia

te
 3

other Trappist beers
non-Trappist beers

Rochefort 8°
Rochefort 10°

Canonical variate 1

Fig. 2. Projections of the MIR data onto the most discriminative canonical variates.

Table 2
Summary of discriminant model performance for each classification problem.

Note that two strategies were used for the R8-nonR8 problem: (1) direct

discrimination and (2) sequential application of the R-nonR model followed by

the R8-R6R10 model. The abbreviations gmet, sens and spec respectively indicate

the geometric mean, sensitivity and specificity.

Problem name Calibration set Test set

Without outliers With outliers

gmet gmet sens spec gmet sens spec

4class 61.3 62.7 x x 60.4 x x

R-nonR 91.8 93.8 96.7 91.1 91.6 91.4 91.6

R8-R6R10 93.1 97.3 94.7 100.0 97.5 95.0 100.0

R8-nonR8

—direct

89.1 89.7 100.0 79.4 87.9 95.0 81.3

R8-nonR8

—sequential

– 93.3 97.1 89.5 93.0 96.0 90.0

T-nonT 81.7 76.8 88.6 66.7 75.7 88.9 64.4
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selected based on the first breakpoint in a scree plot. Between
2 and 8% of the objects were flagged as outliers in each of the
differently pre-treated data sets. The flagged outliers included
objects that were clearly seen to differ from the majority by visual
inspection of the spectra; they could not be related to a specific
brand of beer.

3.3. Dimension reduction and classification

Visualisation of the data after dimension reduction was used
to see if chemometrics (ECVA) could help to identify the beers
compared to visual inspection of the data. It was found that the
application of ECVA resulted in clear separation between the
different groups of interest. In Fig. 2, a score plot of the two
canonical variates (CV1 vs. CV3) for which the greatest separation
was found for the 4class problem is shown as an example. Note
that the data was smoothed and 17 LVs were used in ECVA to
obtain this separation. Based on Fig. 2, it can be seen that in
general the Trappist and non-Trappist beers overlapped heavily
while Rochefort 81 and 101 beers were somewhat separated from
the rest. This pattern was also observed for the other classification
problems indicated in Table 1. Furthermore, the shape and size of
the four classes seemed to differ slightly, indicating an unequal
covariance structure. This is not unexpected since the scatter in
the Rochefort classes arose from variation between the different
bottles of beer while the scatter in the other classes can also be
partly due to variation between different brands of beer.

The projection of data onto canonical variates is a useful
visualisation tool, but it does not necessarily provide an objective
means of authentication of new samples. Therefore, the data were
used as inputs to various classifiers after dimension reduction by
ECVA. An LDA classifier was used by default because both ECVA
and LDA are optimal for homoscedastic class distributions [21,22].
Since the distributions of the classes investigated, as judged by
visual inspection of Fig. 2, did not seem to be homoscedastic, the
reduced data was also used as an input to the QDA and k-NN
classifiers [22]. As mentioned above, these classifiers make
different assumptions about the data compared to LDA and might
be able to deal more efficiently with the data at hand.

In Table 2, the specifics of the model for which the highest
recognition ability was achieved are shown for each classification
problem studied. The models for which a predictive performance
above 90% was observed are deemed suitable for industrial use.
As shown in the table, a correct classification rate slightly below
90% was achieved when directly trying to discriminate the
Rochefort 81 beers from the other brands. However, a second



Table 3
Summary of the pre-treatment, classifier and number of LVs used in the most

discriminative models.

Problem name Smoothing Pre-processing Classifier # LV

4class yes None QDA 17

R8-nonR8 yes SNV LDA 24

R-nonR yes None LDA 25

R8-R6R10 yes SG-deriv (1st)þSNV 1-NN 2

T-nonT yes None 5-NN 18
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strategy to discriminate these beers could also be applied. This
involved a sequential approach in which beers were first classi-
fied as either Rochefort or non-Rochefort (by the R-nonR model)
after which the Rochefort beers were subsequently classified as
Rochefort 81 or Rochefort 61, 101 (by the R8-R6R10 model). This
model resulted in a better performance with a prediction ability
of 93.3%. Note that a hierarchical approach could also make use of
the T-nonT model but, as suspected by the large overlap between
the Trappist and non-Trappist classes evident in Fig. 2, this
approach was not viable: many Trappist beers were misclassified
as non-Trappist and vice versa. The low prediction ability of the
4class model indicated that a multi-group approach was not
possible in this case either. Interestingly, all models deemed
suitable for industrial use may be regarded as robust given that
the accuracy for both test sets (with and without outliers) differed
by less than 2%. For none of the classification problems could
misclassified beers be related to any specific brand.

After the ‘‘best’’ models were selected, canonical weight vectors
obtained by ECVA were studied to determine which areas of the
MIR spectra contained important information for the discrimina-
tion of the beers. These weight vectors are analogous to PCA
loadings and can be interpreted in a similar manner. Note that this
interpretation was only performed for the models that were
acceptable for industrial use. As shown in Fig. 3a, the canonical
weight vector that was obtained for the R8-R6R10 problem
revealed that the different Rochefort beers were mostly identified
by features around 1000–1200 cm�1. This was confirmed by
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(a) the R8-R6R10 and (b) the R-nonR problems, respectively.
repeating the analysis (including pre-treatment and outlier detec-
tion) using spectra truncated to this region. Unfortunately, as
mentioned above, ascription of these peaks is difficult for biolo-
gical matrices. For the R-nonR problem, interpretation of the
canonical weight vector was much more difficult since the
absolute values of weights for the baseline and peaks were more
similar (see Fig. 3b). This noisy structure of the weight vector was
reflected in the large number of LVs that was used in ECVA (see
Table 3). In general, all major peaks in the spectrum seemed to
have a comparable weight which was slightly higher compared to
baseline areas. Therefore, no discriminative region could be
identified for this particular problem.

Table 3 provides details of the settings for the selected models
e.g. which classifier was used. Interestingly, some of the selected
models (4class, R-nonR and T-nonT) did not use any data pre-
treatment; apparently, the ECVA model was not influenced by the
observed multiplicative effects (Fig. 1b) and/or between-batch
baseline differences. In the discussion, it will be argued that pre-
treatment was not required for the R8-nonR8 and R8-R6R10
problems either. The large number of LVs selected in the ECVA
models is a property of this technique that is often observed and
does not necessarily indicate over-fitting of the training data [21].
However, as mentioned above it did seem to have implications
regarding the interpretability of the models.
4. Discussion

As shown above, MIR spectroscopy in combination with ECVA
was able to separate Rochefort 81 from non-Rochefort 81 beers
with a prediction ability of 93.3%. This was achieved by the
sequential application of the Rochefort vs. non-Rochefort and
the Rochefort 81 vs. Rochefort 61, 101 models (prediction abilities
of 93.8% and 97.3%, respectively). For the Trappist vs. non-
Trappist beer classification problem, a prediction ability of only
76.8% was achieved. It should be noted that the models consid-
ered in this study were optimised to maximise overall prediction
ability. For certain applications, maximising the sensitivity or
specificity, instead of the prediction ability, might be a more
appropriate goal.

For the discrimination of Rochefort beers, our reported method
is very competitive with the LC-MS, GC–MS and SVMfusion
approaches that were mentioned previously. Compared to the
MS methods, the advantage of MIR spectroscopy for the authen-
tication of the beers is the relative low cost of the equipment. The
same can be said when comparing our approach to the SVMfusion
method since the latter requires the combination of NIR, MIR and
Raman spectroscopy to achieve a similar accuracy. Moreover, the
use of less complex chemometric techniques, as in this study, also
allows for interpretation of the model, a task which is more
complex for SVM models [26].

In contrast to the use of HS-SPME-GC–MS [5], our approach
with MIR spectroscopy could not successfully discriminate Trap-
pist from non-Trappist beers; the same negative result was
observed when NIR spectroscopy was used for this purpose [8].
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This can be related to lower information content in both the NIR
and MIR data but may also be due to the chemometric
technique(s) applied in the data analysis. Even though various
linear and non-linear classifiers were investigated, the results
may have been largely determined by the preceding application
of the linear dimension reduction with ECVA. Identification of the
beers may possibly be improved by using a kernel approach, such
as SVM, that can deal with non-linear class boundaries [22]
although a brief study involving an SVM with a Gaussian RBF
kernel did not show any improvement over the approach that was
reported in this report (results not shown). Therefore, we suggest
that the imperfect discrimination between Trappist and non-
Trappist beers was related to a lack of sufficient and relevant
information in the data.

To compare the power of MIR to NIR spectroscopy for classi-
fication of the Rochefort beers, the chemometric analysis
described in this work was applied to previously-published NIR
data of the same set of beers [8]. This was done since NIR
spectroscopy is a commonly-used technique for food authentica-
tion and seems intuitively more suitable for this particular
problem due to a lower sensitivity to water and carbon dioxide
[27]. However, it was found that the results obtained were similar
for both spectroscopic methods; only small differences in pre-
dictive ability of at most 3% were observed. Note that the results
obtained from the recalculation using the NIR data from [8] were
not published.

Regarding the selected classification models for MIR data,
further investigation revealed that similar recognition abilities
(o2% difference) were obtained when pre-treatments and classi-
fiers other than those listed in Table 3 were employed. This
indicates that pre-processing of the data was not a critical step in
the analysis. More specifically, neither smoothing nor corrections
for multiplicative effects and baseline differences were required
per se; the pre-treatment needed depended on the classifier
applied. Furthermore, most classification problems (4class,
T-nonT, R-nonR, and R8-nonR8) could actually be solved by an
LDA classifier. This indicates that, even for heteroscedastic data,
the application of ECVA with an LDA classifier is the best option in
most cases and is most likely due to the fact that both techniques
make the same assumptions regarding the data. In some cases,
however, application of a non-LDA classifier after ECVA might be
more fruitful, as shown by the R8-R6R10 problem for which the
recognition ability increased by 8% this way.
5. Conclusion

The investigated combination of FT-IR ATR spectroscopy and
subsequent chemometric data analysis could be applied as an
effective tool for identification of Rochefort 81 beers using
Rochefort vs. non-Rochefort and Rochefort 81 vs. Rochefort 61,
101 models, resulting in an overall correct prediction ability of
93.3%. Prediction abilities of the two sub models are 93.8% and
97.3%, respectively. These results are very competitive with
previously published work that used much more expensive
analytical tools. Furthermore, our data analysis strategy allowed
us to identify spectral regions which were important for the
authentication of Rochefort beers (1000–1200 cm�1). It is impor-
tant to bear in mind that, while this work demonstrates the
potential of this approach for beer brand confirmation, additional
research into model repeatability and stability are required before
any commercial or regulatory deployment would be warranted.

Identification of Trappist from non-Trappist beers with MIR
spectroscopy does not seem to be a viable option: a prediction
ability of only 76.8% was achieved. Therefore, GC–MS is clearly
a more suitable analytical platform for this classification
problem [5].
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